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Abstract: 

 
In this paper we present a new nonhydrostatic dynamical core for a cloud-resolving 

model, which represents an extension of the finite-volume model with the Lin-Rood 
hydrostatic core using a generalized Lagrangian vertical coordinate. Both stable and 
accurate solutions were obtained by solving Riemann problems on all cell interfaces. Our 
scheme is approximately 30% more efficient than that of the ASUM+-up scheme. We 
tested this dynamical core on a few bubble tests. We also tested whether we are able to 
produce seamless solutions that span the hydrostatic and nonhydrostatic regimes using a 
gravity wave test.  
 
1. Introduction  
 

A critical requirement for improving global climate models (GCMs) is the 
development of fast and accurate schemes for treating convection and cloud formation. 
Progress in the development of GCMs that can accurately treat large-scale cloud 
formation and dynamics has been slow. This is partly because cloud formation is a 
subgrid-scale process that occurs under nonhydrostatic conditions in GCMs, which 
typically adopt the hydrostatic approximation. Global models that aim to resolve motions 
with a vertical scale of order 100 m need to include nonhydrostatic effects (Daley, 1988). 
However, the nonhydrostatic equations allow the development of fast sound waves, 
which can travel in all directions, vertically and horizontally and require special 
computational approaches (Durran, 1989; Skamarock and Klemp, 1992) and/or and small 
time steps in order to obtain accurate solutions. Therefore, the main question that faces 
the development of nonhydrostatic models is how to formulate an efficient numerical 
scheme for the small-scale processes represented in the nonhydrostatic atmosphere, 
which can correctly and stably represent the important atmospheric interactions at the 
model resolution (Skamarock, 2008). 

Future climate models based on high-performance parallel computing paradigms will 
be able to address these questions based on first principles. On the one hand, they will 
enable us to further refine the model resolution on a global scale. On the other hand, they 
will allow improved physical parameterization (or a more exact treatment of physical 
processes) using adaptive grid methods. In addition, nonhydrostatic regions embedded in 
a hydrostatic model become feasible (Côté et al. 1998). 

In our work, the NCAR Finite-Volume Community Atmospheric Model framework 
(FVCAM; first available as an option in CAM3) was used to develop the means to solve 
the problem of resolving cloud formation within a larger scale GCM. Our methods use 
techniques developed for adaptation of grid resolution. Solution adaptation is a powerful 
tool that has now been extended by our team at the University of Michigan to solve the 
equations of motion on a sphere for hydrostatic configurations. In addition, we have 



added vertical adaptation as well as the ability to develop vertical integrals to the 
ABLCarT computational library. We also developed algorithms for merging the 
hydrostatic and nonhydrostatic flows when these two domains are joined.  
 In this paper we present results from a nonhydrostatic extension for the Lin-Rood 
dynamical core (Lin and Rood, 1996, 1997; Lin 2004) using a generalized Lagrangian 
vertical coordinate. The multidimensional flux-form semi-Lagrangian (FFSL) Lin-Rood 
dynamical core simulates the conservative, monotonic advection for prognostic variables 
and uses a “vertically Lagrangian” finite-volume (FV) representation of the model 
equations with a mass conserving re-mapping algorithm. The Lagrangian coordinate 
requires a remapping to restore the original resolution and keep the mesh from 
developing distortions such as layers with overlapping interfaces. The horizontal 
numerical algorithm of the Lin-Rood dynamical core is based on the C-D grid. This 
FFSL FV algorithm has been adopted in several atmospheric transport models (e.g., 
CAM, GFDL). We use an unstaggered grid and build the method so it does not require 
filtering of the acoustic waves. We test the method based on both an Eulerian and a 
Lagrangian formulation, using the 2-D warm bubble tests of Robert (1993) as well as his 
warm and cold interacting bubble test. We also test whether the results of this model can 
be merged with solutions in a pure hydrostatic version of the model using the Skamarock 
and Klemp (1992) gravity wave test. In Section 2 we briefly present a 2D (x-z) version of 
the fully compressible Euler equations; in Section 3 we present the results for two warm 
bubble test cases from Robert (1993); in Section 4 we present the results of the gravity 
wave propagation test; in Section 5 we present some conclusions. 
 
2. Nonhydrostatic Model 
 

Our model equations are the fully compressible FV Euler conservation equations in 
the flux form with a vertical Lagrangian coordinate with the model layers being material 
impenetrable surfaces and the bottom layer following the surface terrain. In our 
numerical representation of the model equations, we use an unstaggered grid. We use a 
five-point interpolation scheme to calculate all grid cell interface values of each control 
volume, and we calculate the fluxes at the interfaces by solving the Riemann problem in 
both the horizontal and vertical directions. We developed a light-weight approximate 
Riemann solver (LWARS) to use in both the horizontal and vertical directions. We show 
that LWARS saves considerable computational time (up to 30%) in comparison with the 
advection upstream splitting method (AUSM+-up) (Liou, 2006; Ullrich et al., 2010) but 
retains its accuracy.  

 
3. Bubble Tests 
 

We tested our nonhydrostatic approach in solving the equations for the 
nonhydrostatic atmosphere using the two standard tests of Robert (1993). These tests are 
for two different warm bubbles: the “uniform” bubble and “Gaussian” bubble, both rising 
in an isentropic atmosphere within a closed box. The results of the experiment for 
different model resolutions are presented in Fig. 1. We applied the same spatial grid 
resolution of five and ten meters as in Robert (1993). The uniform bubble (two left 
columns in Fig. 1) at dx = 10 m looks more “diffusive” than that shown by Robert 



(1993), but it looks “sharper” at dx = 5 m where the Kelvin–Helmholtz instability curls at 
the bubble edges are nicely resolved. For the Gaussian bubble (last right column in Fig. 
1), the main differences at 18 min are visible in the configuration of the bubble “head.” 
The Kelvin–Helmholtz instability in the upper branch of the bubble is better resolved 
than is the lower one. The results obtained with our Riemann solver approximation for 
both types of bubble are closer to the results obtained with the ASUM+-up Riemann 
solver (Liou, 2006). 
 
                Uniform Bubble.            Uniform Bubble.                Gaussian Bubble. 

 
             (a) dx = 5m, t = 5min      (b) dx = 10m, t = 5min       (c) dx = 10m, t= 10min 

 
             (d) dx = 5m, t = 10min  (e) dx = 5 m, t = 10min        (f) dx = 10 m, t = 18min 
 
Figure 1. Uniform and Gaussian bubbles for different resolutions (dx,dz) and times (t). 

 
4. Gravity Waves Propagation in Hydrostatic and Nonhydrostatic Regimes 

 
We formulated the nonhydrostatic equations in a manner that would be consistent 

with a hydrostatic treatment based on a vertical Lagrangian coordinate, in order to be able 
to smoothly couple solutions between hydrostatic and nonhydrostatic regimes. Thus, we 
developed a version of the model that assumes the hydrostatic equations. In both the 
hydrostatic and nonhydrostatic codes, the flux form of the equations is used. Some 
variables, such as velocity components and potential temperature, are shared by both 
regimes; others, such as the nonhydrostatic pressure anomaly, are zero in the hydrostatic 
region and predicted in the nonhydrostatic region.  

We used the gravity wave test from Skamarock and Klemp (1992) to test our ability 
to couple solutions in the hydrostatic and nonhydrostatic regimes in a one-layer 
configuration. This test was conducted in an atmosphere of constant Brunt-Väisälä 
frequency in a channel of length L and height H with an outgoing upper boundary and 
solid, free-slip lower boundary.  



Figure 2 presents the test results at 50 min for the domain L = 300 km, H = 10 km 
with a disturbance located at 100 km. Each row in Fig. 2 represents different test 
resolutions: the upper row is 5000 x 500 m, the middle row is 2500 x 250 m and the last 
row is 1250 x 125 m. The first column represents a test where the initial perturbation 
started on the left in the hydrostatic regime and flows into the nonhydrostatic regime on 
the right (and also flows to the left, remaining in the hydrostatic regime). The right 
column represents a test where the initial perturbation starts on the left in the 
nonhydrostatic regime. In both columns, the initial disturbance is located on the left side 
of the white line, which separates the hydrostatic and nonhydrostatic regimes. In the first 
column the hydrostatic regime is on the left, while in the second column it is on the right. 
To link the two regions, we defined four additional ghost cells for our interpolation 
schemes in both regimes. These four ghost cells allow us to maintain a second-order 
accurate solution within both the hydrostatic and nonhydrostatic regimes with a minimum 
number of “ghost cell” overlap regions in the two regimes.  
 

 

 

 
Figure 2. Transition from the hydrostatic to nonhydrostatic regime (left column) and from the 
nonhydrostatic to hydrostatic regime (right column) for different resolutions:  Upper row is 5000 
x 500 m, the middle row is 2500 x 250 m, and the last low is 1250 x 125 m (see further 
explanation in the text). 

 
As expected, the coarse resolution results (first row) show a perturbation that looks 

similar in both hydrostatic and nonhydrostatic regimes. The high-resolution case (the last 
row) shows considerable differences in both the hydrostatic vs. nonhydrostatic gravity 
wave propagation and a different wave structure when the wave is propagating from the 
hydrostatic part to the nonhydrostatic part and also when it is propagating from the 
nonhydrostatic part to the hydrostatic part.  

 
 
 



5. Conclusions 
 

We have benchmarked our numerical solver’s performance with a series of tests. Our 
solution technique is stable and does not amplify numerical noise during the integration. 
We are extending this dynamical core for eventual use in an adaptive mesh refinement 
version of a global dynamical core. 
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